 Baltic Olympiad in Informatics 2018 Open - practice session

#### Start

2018-04-27 15:30 UTC

## Baltic Olympiad in Informatics 2018 Open - practice session

#### End

2018-04-27 17:30 UTC
The end is near!
Contest is over.
Not yet started.
Contest is starting in -574 days 0:57:30

2:00:00

0:00:00

# Problem ASimple Arithmetic

You are given three integers $a, b, c$ ($1 \le a, b, c \le 10^9$). Compute $a \cdot b / c$, with an absolute precision of $10^{-6}$.

## Input

The first and only line of input contains the three integers $a, b, c$ separated by a single space.

## Output

Output a single floating point number. It must differ from $a \cdot b / c$ by at most $10^{-6}$ in absolute value, i.e., it should obey $|x - a \cdot b / c| \le 10^{-6}$.

## Constraints

Your solution will be tested on a set of test groups, each worth a number of points. Each test group contains a set of test cases. To get the points for a test group you need to solve all test cases in the test group.

 Group Points Limits 1 25 $1 \le a, b, c \le 10$ 2 25 $1 \le a, b, c \le 10\, 000$ 3 25 $1 \le a, b \le 10^9, c = 1$ 4 25 $1 \le a, b, c \le 10^9$
Sample Input 1 Sample Output 1
3 5 7

2.142857142857142857

Sample Input 2 Sample Output 2
9999 9876 1

98750124

Sample Input 3 Sample Output 3
123456789 987654321 1

121932631112635269.000000000000000000

Sample Input 4 Sample Output 4
123456789 987654321 7

17418947301805038.428571428571428571